Posted on January 13, 2025May 14, 2025 by Dale Phillips Is “Guitar Design” an Oxymoron? Is “Guitar Design” an Oxymoron? by Steve Klein from his 2001 GAL Convention lecture Originally published in American Lutherie #76, 2003 and Big Red Book of American Lutherie Volume Seven, 2015 Webster’s defines “oxymoron” as “a figure of speech in which opposites or contradictory ideas or terms are combined, e.g., sweet sorrow” and my personal favorite, “thunderous silence.” The second definition of “design” is “being able to make original plans.” When Todd Brotherton called to ask if I would speak here today, he mentioned that I’ve been doing my design thing for near on thirty years. And almost in the same breath, he called my ideas new and innovative. What’s wrong with this picture? Palm pilots are new. Downloading MP3s is new. Viagra is new. My ideas are no longer new. So why are the things that I’m trying to do still thought of as new? Or we might ask, why is the musical world so slow to change, when everything else in our culture seems to be on the fast track? Why might it take so long for acoustic guitars to evolve? This begs some questions, such as: Become A Member to Continue Reading This Article This article is part of our premium web content offered to Guild members. To view this and other web articles, join the Guild of American Luthiers. Members also receive 4 annual issues of American Lutherie and get discounts on products. For details, visit the membership page. If you are already a member, login for access or contact us to setup your account.
Posted on July 8, 2024May 15, 2025 by Dale Phillips Not Only Cones Make It — and Cylinders Almost Do Not Only Cones Make It — and Cylinders Almost Do by F.A. Jaén Originally published in American Lutherie #101, 2010 In the years since Tim Olsen’s article “Cylinders Don’t Make It” appeared in AL#8 (Winter 1986; also BRBAL1) the main ideas presented there have been accepted, developed, and finally, simplified and distorted. Many, including myself, remembered it more like “Only Cones Make It.” The first indication that something in my ideas was wrong was when I made a CAD model of a fretboard some time ago. I wanted it to have a constant curvature radius of 300MM (around 12"). There are many customers that still want that, in spite of offering well-designed conical-shaped fingerboards. My first thought was to draw two circles, 12" diameter, one directly above the other, at the distance from nut to end. After that, I would trace two diverging straight lines connecting both circles and defining both the edges of the fretboard and the widths at its ends. The surface could then be generated by moving one of the edge lines towards the other, using the end circles as rail curves (what is known as a “sweep” command in many CAD packages). Become A Member to Continue Reading This Article This article is part of the Articles Online featured on our website for Guild members. To view this and other web articles, join the Guild of American Luthiers. Members also receive 3 annual issues of American Lutherie and get discounts on products. For details, visit the membership page. MEMBERS: login for access or contact us to setup your account.
Posted on July 8, 2024May 9, 2025 by Dale Phillips At the Outer Limits of Solid Geometry: The “Twisted Neck” Guitar At the Outer Limits of Solid Geometry: The “Twisted Neck” Guitar by Leo Burrell Originally published in American Lutherie #12, 1987 and Big Red Book of American Lutherie Volume One, 2000 I was greatly amused by remembering my own struggles while reading the articles in AL#8 about the compound radius of the fretboard. I was actually practicing these techniques before knowing what a plain old radius is. I have only been in the music business since applying for patent letters for my naturally rotated (twisted) string assembly (all of the components that define the string alignment: nut, neck, bridge, top of the body). That was April 1984. And I never would have built an instrument at all, let alone carve a compound radius, if the “Music Moguls” had had any respect for my invention. But they didn’t, so I did. I enclose a photograph of me holding an instrument I modified in June 1984. I shaped the neck from a solid block of cherry given to me by Dan Rowe, shop teacher at Western Beaver High School, Industry, Pennsylvania. I whittled and otherwise shaped it during evenings for about two weeks, using the kitchen counter for a workbench. Oddly enough, I roughly followed the procedure you described in your article “Cylinders Don’t Make It” to shape the fingerboard. However, in my case, the procedure was complicated by the approximate 45° rotation. Become A Member to Continue Reading This Article This article is part of the Articles Online featured on our website for Guild members. To view this and other web articles, join the Guild of American Luthiers. Members also receive 3 annual issues of American Lutherie and get discounts on products. For details, visit the membership page. MEMBERS: login for access or contact us to setup your account.
Posted on July 1, 2024May 22, 2025 by Dale Phillips Letter: Technical Qualm with Jim Blilie’s Article in AL#100 Letter: Technical qualm with Jim Blilie’s article in AL #100 by Alan Carruth Originally published in American Lutherie #101, 2010 Tim — I really enjoyed AL#100. It’s a nice mix of “technoid,” “art,” and “craft” articles. Lots of good info, but I did see a couple of things I wanted to respond to. First, in Jim Blilie’s article, which was excellent overall, I have a disagreement that rises above the level of minor. He says, on p. 31: “The fact that the relationship between stiffness (Young’s modulus) and density is inherently linear shows that just changing wood species doesn’t affect the stiffness-to-weight ratio very much.” The problem with that is, while the lengthwise Young’s modulus (E) values for both hardwoods and softwoods tend to fall on straight lines, they are different lines, owing to differences in basic structure in the woods. I’ve been measuring the properties of wood samples for several years. I’m enclosing a graph of long grain E vs. density for most of the pieces I’ve measured so far (147 samples), with eyeballed “average” lines drawn in. The softwoods include all of the usual-suspect top woods, as well as white pine and Mediterranean cypress. As you can see, the points fall very close to a straight line toward the left side of the chart. The hardwoods include a lot of lutherie woods (most of the samples are Indian rosewood), and some others, with balsa and blackwood being the end points. As you can see, the scatter of the points is greater, but they do at least suggest a line. One could, of course, draw a single line that took in all of the data points, but at the cost of accepting quite a lot more scatter in the softwood data. Given the relative homogeneity of softwood structure, this seems unwarranted. Besides, the resulting line would not approach the origin at all closely, which would be illogical. As is, the hardwood line is in no way an extension of the softwood line. Balsa, and yew, ’way down on the left, overlap the softwood area, as do a few of the softer hardwoods, such as butternut. Still, compared with the softwoods, hardwoods tend to have higher density for the equivalent E value. Become A Member to Continue Reading This Article This article is part of our premium web content offered to Guild members. To view this and other web articles, join the Guild of American Luthiers. Members also receive 4 annual issues of American Lutherie and get discounts on products. For details, visit the membership page. If you are already a member, login for access or contact us to setup your account.
Posted on July 1, 2024May 14, 2025 by Dale Phillips Opinion Opinion by Keith Hill Originally published in American Lutherie #63, 2000 Everyone who practices an art, a craft, or a profession belongs to only one of two groups: Those who love the art, craft, or profession; or those who love being involved in the art, craft, or profession. That which distinguishes these two groups is that those in the latter group are in love with the idea of being an artist, craftsman, or professor while those in the former love the art itself. What does this have to do with being a musical instrument maker? Everything. The art and craft of the professional instrument maker hinges on knowing how to reliably produce a musical instrument which equals in every way the quality of the best that has gone before. To deny this reality makes a farce of the whole business. Why? Because if you replace the words “musical instrument maker” with the word “chef” (as in gourmet cook) and the words “musical instrument” with the word “food,” no one would quibble with that statement. Since musical instruments produce sound which the ears “eat,” I see no difference (nor did Mattheson who used the same metaphor in discussing music back in the 18th century) in how the standards of quality should apply. Yet, the field of professional musical instrument making is plagued with the attitude that “because we don’t know and can’t know how the great instruments from the past were made, we do the best we can and focus our attention on what we can do well” which, unfortunately, means building instruments that appeal to the eye and not to the ear. No one would hire an engineer to build a bridge who had that attitude. No one would hire a chef who had that attitude, much less want to eat anything cooked up by such person. Yet, in the field of music, such an attitude is normal. Become A Member to Continue Reading This Article This article is part of our premium web content offered to Guild members. To view this and other web articles, join the Guild of American Luthiers. Members also receive 4 annual issues of American Lutherie and get discounts on products. For details, visit the membership page. If you are already a member, login for access or contact us to setup your account.